Cyclopropanation of N -Substituted 2-Oxochromene-3-carboxamides and 3-Oxobenzo[f]chromene-2-carboxamides with Bromine-containing Zinc Enolate Prepared from α, α-Dibromopinacolin and Zinc

V.V. Shchepin, P.S. Silaichev, M.I.Vakhrin, and N.Yu. Russkikh
Perm State University, Perm, 614990 Russia

Received July 22, 2004

Abstract

Zinc enolate obtained from 1,1-dibromo-3,3-dimethylbutan-2-one reacted with N -substituted 2-oxochromene-3-carboxamides and 3 -oxobenzo[f]chromene-2-carboxamides affording 1-(2,2-dimethyl-propanoyl)-2-oxo-1a,7b-dihydrocyclopropa[c]chromene-1a-carboxamides and 1-(2,2-dimethylpropanoyl)-2-oxo-1a,9Cdihydrobenzo[$f]$ cyclopropa $[c]$ chromene-1a-carboxamide as single isomers.

In extension of studies on the cyclopropanation of 2-oxochromene-3-carboxylic acid derivatives [1, 2] we investigated the reaction of N -substituted amides of this acid and its analogs with a bromine-containing zinc enolate II generated from α, α-dibromopinacolin (I) and zinc.

It was established that zinc enolate II was highly reactive toward electrophilic substrates IIIa-IIIc and IV. The reaction occurred along the following scheme.

First the treating with organozinc reagent II converts substrates IIIa-IIIc and IV into the corresponding salts, and then zinc enolate II regiospecifically adds with its Cnucleophilic center to the C^{4} atom of the heterocycle providing intermediates Va-Vc and VI. The latter spontaneously undergo cyclization transforming into intermediates VIIa-VIIc and VIII which on hydrolysis afford the target products, N -substituted 1-(2,2-dimethylpropanoyl)-2-oxo- $1 a, 7 b$-dihydrocyclopropa [c]chromene- $1 a$ carboxamides IXa-IXc, and 1-(2,2-dimethylpropanoyl)-2-oxo-1 $a, 9 C$-dihydrobenzo $f f]$ cyclopropa $[c]$ chromene-1 a carboxylic acid p-toluidide (\mathbf{X}) (see Scheme).

The structure of obtained compounds IXa-IXc and \mathbf{X} was proved by the data of IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy. In the IR spectra appear characteristic absorption bands (v) of amide carbonyl at 1670-1680, ketone and lactone carbonyls at 1725-1755, and NH group at 3325$3390 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectra a single set of proton signals is observed evidencing that the compounds synthesized formed as one geometrical isomer. It is known that in cyclopropa $[c]$ chromene derivatives of similar struc-
tures the value of coupling constant $J_{\mathrm{HH}}^{c i s}$ is 9.4-9.8, and $J_{\mathrm{HH}}^{\text {trans }}$ is $5.1-5.5 \mathrm{~Hz}$ [3].

To gain more information on the configuration of such compounds we performed by the above procedure a synthesis of ethyl 1-(2,2-dimethylpropanoyl)-2-oxo-1a,7bdihydrocyclopropa $[c]$ chromene-1 a-carboxylate (XI) using as starting compound ethyl 2-oxochromene-3-carboxylate.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{X I} J_{\mathrm{H}^{\prime} \mathrm{C}-\mathrm{CH}^{\text {b }}}$ is equal to 10.0 Hz . In the ${ }^{1} \mathrm{H}$ NMR spectra of compounds IXa-IXc and $\mathbf{X} J_{\mathrm{H}^{\prime} \mathrm{C}-\mathrm{CH}^{7 b}}$ is 10.2 and $J_{\mathrm{H}^{\prime} \mathrm{C}-\mathrm{CH}^{\varphi_{c}}}$ is 9.8 Hz respectively, i.e, very close to $J_{\mathrm{HH}}^{c i s}$ of cyclopropa $[c]-$ chromene derivatives [3]. These data are a reliable proof of compounds IXa-IXc and \mathbf{X} formation as a single diastereomer with pivaloyl and amide (or alkoxycarbonyl) groups situated on the different sides with respect to the plane of the cyclopropane ring.

EXPERIMENTAL

IR spectra were recorded on a spectrometer UR-20 from samples as mulls in mineral oil. ${ }^{1} \mathrm{H}$ NMR spectra of compounds IXa-IXc, X, and XI were registered from solutions in CDCl_{3} on Tesla BS-576 A instrument at operating frequency 100 MHz using HMDS as internal reference.

1-(2,2-Dimethylpropanoyl)-2-oxo-1a,7b-dihydrocyclopropa $[c]$ chromene-1 a-carboxamides IXa-IXc and 1-(2,2-dimethylpropanoyl)-2-oxo-1a,9C-di-

Scheme.

II

III, V, VII, IX, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}(\mathbf{a}), 4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{b}), \mathrm{C}_{6} \mathrm{H}_{11}(\mathbf{c}) ;$ IV, VI, VIII, X, $\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$.
hydrobenzo[f]cyclopropa[c]-chromene-1a-carboxylix acid \boldsymbol{p}-toluidide (X). To 4 g of fine zinc turnings in 7 ml of ether and 10 ml of ethyl acetate was added 0.03 mol of α, α-dibromopinacolin. The mixture was heated till the reaction started, and then it proceeded spontaneously. On completion of the reaction the mixture was boiled for 15 min , cooled, and decanted from zinc. Then to the solution was added 0.01 mol of compound IIIaIIIc or IV, the mixture was boiled for 30-40 min, cooled, and hydrolyzed with 5% acetic acid. The product was extracted into benzene, the solvent was distilled off, and the residue was recrystallized from ethyl acetate or methanol.

1-(2,2-Dimethylpropanoyl)-2-oxo-1a, $\mathbf{7} b-$ dihydrocyclopropa[c]chromene-1a-carboxylic acid benzylamide (IXa). Yield 65%, mp $125-127^{\circ} \mathrm{C}$. IR spectrum, v, $\mathrm{cm}^{-1}: 1680,1735,1745,3390 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.95 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 3.35 \mathrm{~d}, 3.67 \mathrm{~d}(2 \mathrm{H}, \mathrm{CH}$, $\left.J_{\mathrm{H}^{l} \mathrm{C}-\mathrm{CH}^{7 b}} 10.2 \mathrm{~Hz}\right), 4.39 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J 5.6 \mathrm{~Hz}\right), 6.83-$
$7.25 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{Ph}\right), 8.53 \mathrm{t}(1 \mathrm{H}, \mathrm{NH})$. Found, \%: C 7.07; H 6.05; N 3.58. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}$. Calculated, \%: C 73.19; H 6.14; N 3.71.

1-(2,2-Dimethylpropanoyl)-2-oxo-1a,7b-dihydro-cyclopropa[c]chromene-1 \boldsymbol{a}-carboxylic acid p-toluidide (IXb). Yield 52%, mp $179-180^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1680,1735,1755,3325 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.97 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 2.24 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 3.38 \mathrm{~d}$, $3.74 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}, J_{\mathrm{H}^{\prime} \mathrm{C}-\mathrm{CH}^{7 b}} 10.2 \mathrm{~Hz}\right), 6.89-7.35 \mathrm{~m}(8 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{MeC}_{6} \underline{\mathrm{H}}_{4}\right), 10.09 \mathrm{~s}(1 \mathrm{H}, \mathrm{NH})$. Found, \%: C 73.04; H 6.03; $\mathrm{N} 3.60 . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}$. Calculated, \%: C 73.19; H 6.14; N 3.71 .

1-(2,2-Dimethylpropanoyl)-2-oxo-1a,7b-di-hydrocyclopropa[c]chromene-1a-carboxylic acid cyclohexylamide (IXc). Yield 63%, mp 192- $193^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1670,1735,1745,3375 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.95 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.16-1.92 \mathrm{~m}(10 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 3.29 \mathrm{~d}, 3.40 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}, J_{\mathrm{H}^{l} \mathrm{C}-\mathrm{CH}^{7 b}} 10.2 \mathrm{~Hz}\right), 3.45$ $\mathrm{m}\left(1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 6.85-7.20 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.09 \mathrm{~d}(1 \mathrm{H}$,

NH). Found, \%: C 72.40; H 7.29; N 3.65. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4}$. Calculated, \%: C 72.51; H 7.37; N 3.79.

1-(2,2-Dimethylpropanoyl)-2-oxo-1a,9C-dihydrobenzo[f]cyclopropa $[c]$ chromene- $1 a$-carboxylic acid p-toluidide (X). Yield 41%, mp $99-101^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1665,1725,1740,3330 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.87 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 2.24 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 3.58 \mathrm{~d}, 4.21 \mathrm{~d}$ $\left(2 \mathrm{H}, \mathrm{CH}, J_{\mathrm{H}^{\prime} \mathrm{C}-\mathrm{CH}^{9}} 9.8 \mathrm{~Hz}\right), 6.95-7.93 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}_{6}, 4-\right.$ $\left.\mathrm{MeC}_{6} \underline{\mathrm{H}}_{4}\right), 10.07 \mathrm{~s}(1 \mathrm{H}, \mathrm{NH})$. Found, \%: C 75.73; H 5.80; N 3.17. $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}$. Calculated, \%: C 75.86; H 5.89; N 3.28.

Ethyl 1-(2,2-dimethylpropanoyl)-2-oxo-1a,7b-dihydrocyclopropa $[c]$ chromene- $1 a$-carboxylate (XI). To 2 g of fine zinc turnings in 7 ml of ether and 10 ml of ethyl acetate was added 0.03 mol of α, α-dibromopinacolin. The mixture was heated till the reaction started, and then it proceeded spontaneously. On completion of the reaction the mixture was boiled for 5 min , cooled, and decanted from zinc. Then 0.01 mol of ethyl 2-oxo-chromene-3-carboxylate was added, the mixture was boiled for 30-40 min, cooled, and hydrolyzed with 5\%
acetic acid. The product was extracted into benzene, the solvent was distilled off, and the residue was recrystallized from methanol. Yield $78 \%, \mathrm{mp} 155^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1690,1730,1760 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.00 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.22 \mathrm{t}(3 \mathrm{H}, \mathrm{Me}), 3.07 \mathrm{~d}, 3.59 \mathrm{~d}(2 \mathrm{H}$, $\left.\mathrm{CH}, J_{\mathrm{H}^{\prime} \mathrm{C}-\mathrm{CH}^{7 b}} 10.0 \mathrm{~Hz}\right), 4.17 \mathrm{q}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), \sim 7.05 \mathrm{~m}(4 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$). Found, \%: C 68.22; H 6.30. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$. Calculated, \%: C 68.34; H 6.37.

The study was carried out under financial support of the Russian Foundation for Basic Research (grant no. 04-03-96036).

REFERENCES

1. Shchepin, V.V., Kalyuzhnyi, M.M., Shchepin, R.V., and Vakhrin, M.I., Zh. Org. Khim., 2003, vol. 39, p. 892
2. Shchepin, V.V., Kalyuzhnyi, M.M., Silaichev, P.S., Russkikh, N.Yu., Shchepin, R.V., Ezhikova, M.A., and Kodess, M.I., Zh. Org. Khim., 2004, vol. 40, p. 1399
3. Bojilova, A., Trendafilova, A., Ivanov, C., and Rodios, N.A., Tetrahedron, 1993, vol. 49, p. 2275.
